

Delft University of Technology, EEMCS faculty Examination Mathematics 2, AESB1210-15 Thursday, April 12th, 2018, 9.00-12.00

- It's not allowed to use a calculator or a mathematical table.
- Each answer should be clearly motivated.
- Simplify your answer as much as possible.
- Your grade is obtained by rounding (score+5)/5 to the nearest half.
- Points:

Ex. 1	5,5	Ex. 2	3	Ex. 3	3,5	Ex. 4	3	Ex. 5	3
Ex. 6a	4	Ex. 7	3	Ex. 8a	2,5	Ex. 9a	4,5	Ex. 10	4
Ex. 6b	2			Ex. 8b	2,5	Ex. 9b	2		
				Ex. 8c	2,5				

- 1. Find the general solution, in explicit form, of $e^x y' + x \sqrt{4 y} = 0$.
- **2.** Let y(t) be the solution of the initial value problem y' 2y = 0.5 t and y(0) = 1. Use Euler's method with step size h = 0.5 to approximate y(1).
- 3. Make the substitution $v(x) = e^{2y(x)}$ to convert $2x e^{2y} \frac{dy}{dx} = 3x^4 + e^{2y}$, with x > 0, into a linear differential equation. Write this linear differential equation in standard form (don't solve this linear differential equation).
- **4.** Find $|e^{e^z}|$ if $z = \ln(8) + \frac{1}{4}\pi i$.
- 5. Find a trial solution for the differential equation $4y'' 12y' + 9y = 24xe^{\frac{3}{2}x}$ if the method of undetermined coefficients is used. Do not determine the coefficients.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 3\alpha \\ 7 & 2\alpha + 14 & 43 - 7\alpha \end{bmatrix}, \text{ where } \alpha \in \mathbb{R}$$

- **6.** The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 3\alpha \\ 7 & 2\alpha + 14 & 43 7\alpha \end{bmatrix}$, where $\alpha \in \mathbb{R}$. **a.** For which value(s) of α is vector $\begin{bmatrix} 4 \\ 7 \\ 40 \end{bmatrix}$ in the range of T? **b.** For which value(s) of α is vector $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ in NUL(A)?

7. Find matrix
$$B$$
 if $\begin{pmatrix} B^T - 3 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix}^{-1} = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$.

- 8. Mark each statement True or False, justify your answers.
 - **a.** Statement 1: If $\underline{a}, \underline{b} \in \mathbb{R}^n$ and $\{\underline{a} + \underline{b}, \underline{a} \underline{b}\}$ is linearly independent then $\{\underline{a}, \underline{b}\}$ is linearly independent.
 - **b.** Statement 2: If $n \times n$ matrices E and F have the property that $EF = I_n$, the $n \times n$ identity matrix, then EF = FE.
 - **c.** Statement 3: If $n \times n$ matrices A and B have the property that rank(A) = rank(B) then $rank(A^2) = rank(B^2)$.

$$\mathbf{9.} \ \, \operatorname{Let} \, \underline{x} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \text{ and } U = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

- **a.** Write \underline{x} as the sum of a vector $\underline{u} \in U$ and a vector $\underline{w} \in U^{\perp}$, the orthogonal complement of U in \mathbb{R}^4 .
- **b.** Find a basis for U^{\perp} . $\rightarrow C_{-}$
- **10.** A certain experiment generates the data $(0, -\frac{1}{2})$, $(\frac{1}{4}\pi, \frac{1}{2}\sqrt{2})$, $(\frac{1}{2}\pi, 1)$ and $(\frac{3}{4}\pi, \frac{1}{2}\sqrt{2})$ in the xy plane. Find the least-squares fit of the form $y = \alpha \cos(x) + \beta \sin(x)$, where $\alpha, \beta \in \mathbb{R}$.